Lanotan
Mitrephora lanotan is a species of plant in the Annonaceae family. It is endemic to the Philippines. References edit ' Mitrephora lanotan '.
Click to expand.When I first read the post, I thought you were off on another expedition! I quickly learned that the query is real. I did a quick PubMed search on “melatonin AND hair” and came up with some interesting research.
I have attached some articles as well. At this time, there is nothing of immediate clinical relevance.Fischer TW. The influence of melatonin on hair physiology. Hautarzt 2009;60(12):962-72.Melatonin, the pineal gland hormone and a strong antioxidant, has long been known, particularly in animal-experiment based research and the wool-producing industry, to be a potent regulatory neuroendocrine substance in relation to hair growth, hair color and hair cycle, depending on light periods, seasonal rhythms, environmental factors and reproductive rhythms. Nevertheless, the biological mechanisms of this extremely versatile hormone, especially with regard to human hair follicles, are not fully understood. In recent years, however, essential knowledge has been gained on the melatoninergic system of the skin, melatonin levels in keratinocytes and hair follicles, extrapineal intrafollicular melatonin synthesis and noradrenalin-induced increase in synthesis, as well as hair cycle-dependent expression of the membrane-bound melatonin receptor MT2 and the nuclear receptor RORalpha.
Functional data on the growth of human hair both in vitro and in vivo show that melatonin might play an essential role in hair physiology.Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 2008;17(9):713-30.Melatonin, one of the evolutionarily most ancient, highly conserved and most pleiotropic hormones still operative in man, couples complex tissue functions to defined changes in the environment. Showing photoperiod-associated changes in its activity levels in mammals, melatonin regulates, chronobiological and reproductive systems, coat phenotype and mammary gland functions. However, this chief secretory product of the pineal gland is now recognized to also exert numerous additional functions which range from free radical scavenging and DNA repair via immunomodulation, body weight control and the promotion of wound healing to the coupling of environmental cues to circadian clock gene expression and the modulation of secondary endocrine signalling (e.g.
Release, oestrogen receptor-mediated signalling). Some of these activities are mediated by high-affinity membrane (MT1, MT2) or specific cytosolic (MT3/NQO2) and nuclear hormone receptors (ROR alpha), while others reflect receptor-independent antioxidant activities of melatonin. Recently, it was shown that mammalian (including human) skin and hair follicles are not only melatonin targets, but also sites of extrapineal melatonin synthesis.
Therefore, we provide here an update of the relevant cutaneous effects and mechanisms of melatonin, portray melatonin as a major skin protectant and sketch how its multi-facetted functions may impact on skin biology and pathology. This is illustrated by focussing on recent findings on the role of melatonin in photodermatology and hair follicle biology. After listing a number of key open questions, we conclude by defining particularly important, clinically relevant perspectives for how melatonin may become therapeutically exploitable in cutaneous medicine.Fischer TW, Slominski A, Tobin DJ, Paus R. Melatonin and the hair follicle. J Pineal Res 2008;44(1):1-15.Melatonin, the chief secretory product of the pineal gland, has long been known to modulate hair growth, pigmentation and/or molting in many species, presumably as a key neuroendocrine regulator that couples coat phenotype and function to photoperiod-dependent environmental and reproductive changes.
However, the detailed effects and mechanisms of this surprisingly pleiotropic indole on the hair follicle (HF) regarding growth control and pigmentation have not yet been completely understood. Life of black tiger color codes. While unspecific melatonin binding sites have long been identified (e.g., in goat and mouse HFs), specific melatonin membrane MT2 receptor transcripts and both protein and mRNA expression for a specific nuclear melatonin binding site retinoid-related orphan receptor alpha (RORalpha) have only recently been identified in murine HFs. MT1, known to be expressed in human skin cells, is not transcribed in mouse skin.
After initial enzymologic data from hamster skin related to potential intracutaneous melatonin synthesis, it has recently been demonstrated that murine and human skin, namely human scalp HFs in anagen, are important sites of extrapineal melatonin synthesis. Moreover, HF melatonin production is enhanced by catecholamines (as it classically occurs in the pineal gland). Melatonin may also functionally play a role in hair-cycle control, as it down-regulates both apoptosis and estrogen receptor-alpha expression, and modulates MT2 and RORalpha expression in murine skin in a hair-cycle-dependent manner. Because of melatonin's additional potency as a free radical scavenger and DNA repair inducer, the metabolically and proliferatively highly active anagen hair bulb may also exploit melatonin synthesis in loco as a self-cytoprotective strategy.Slominski A, Fischer TW, Zmijewski MA, et al.
On the role of melatonin in skin physiology and pathology. Endocrine 2005;27(2):137-48.Melatonin has been experimentally implicated in skin functions such as hair growth cycling, fur pigmentation, and melanoma control, and melatonin receptors are expressed in several skin cells including normal and malignant keratinocytes, melanocytes, and fibroblasts. Melatonin is also able to suppress ultraviolet (UV)-induced damage to skin cells and shows strong antioxidant activity in UV exposed cells. Moreover, we recently uncovered expression in the skin of the biochemical machinery involved in the sequential transformation of l-tryptophan to serotonin and melatonin.
Existence of the biosynthetic pathway was confirmed by detection of the corresponding genes and proteins with actual demonstration of enzymatic activities for tryptophan hydroxylase, serotonin N-acetyl-transferase, and hydroxyindole-O-methyltransferase in extracts from skin and skin cells. Initial evidence for in vivo synthesis of melatonin and its metabolism was obtained in hamster skin organ culture and in one melanoma line. Therefore, we propose that melatonin (synthesized locally or delivered topically) could counteract or buffer external (environmental) or internal stresses to preserve the biological integrity of the organ and to maintain its home-ostasis. Furthermore, melatonin could have a role in protection against solar radiation or even in the management of skin diseases.Fischer TW, Burmeister G, Schmidt HW, Elsner P. Melatonin increases anagen hair rate in women with androgenetic alopecia or diffuse alopecia: results of a pilot randomized controlled trial. Br J Dermatol 2004;150(2):341-5.BACKGROUND: In addition to the well-known hormonal influences of and dihydrotestosterone on the hair cycle, melatonin has been reported to have a beneficial effect on hair growth in animals. The effect of melatonin on hair growth in humans has not been investigated so far.
OBJECTIVES: To examine whether topically applied melatonin influences anagen and telogen hair rate in women with androgenetic or diffuse hair loss. METHODS: A double-blind, randomized, placebo-controlled study was conducted in 40 women suffering from diffuse alopecia or androgenetic alopecia. A 0.1% melatonin or a placebo solution was applied on the scalp once daily for 6 months and trichograms were performed to assess anagen and telogen hair rate. To monitor effects of treatment on physiological melatonin levels, blood samples were taken over the whole study period. RESULTS: Melatonin led to a significantly increased anagen hair rate in occipital hair in women with androgenetic hair loss compared with placebo (n=12; P=0.012). For frontal hair, melatonin gave a significant increase in the group with diffuse alopecia (n=28; P=0.046).
The occipital hair samples of patients with diffuse alopecia and the frontal hair counts of those with androgenetic alopecia also showed an increase of anagen hair, but differences were not significant. Plasma melatonin levels increased under treatment with melatonin, but did not exceed the physiological night peak. CONCLUSIONS: To the authors' knowledge, this pilot study is the first to show that topically applied melatonin might influence hair growth in humans in vivo. The mode of action is not known, but the effect might result from an induction of anagen phase.